ارائه یک مدل ریاضی استکلبرگ جهت تخصیص سلاح به هدف با در نظر گرفتن حملات توأم هوایی و زمینی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی صنایع، دانشکده مهندسی صنایع و مکانیک، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران

چکیده

تخصیص بهینه تجهیزات جهت خنثی‌سازی اهداف که اغلب با عنوان مسئله‌ی تخصیص سلاح به هدف از آن یاد می‌شود به یکی از کانون‌های اصلی تفکر نظامی نوین تبدیل شده است. تخصیص سلاح با در نظر گرفتن اصل صرفه‌جویی در منابع، بدون کاستن از قدرت نابودکنندگی سامانه‌ها همواره جهت محافظت از زیرساخت‏‌های حیاتی مورد توجه بوده است. زیرساخت‌های حیاتی شامل دارایی‌های فیزیکی یک سیستم است که از دست دادن آن‌ها منجر به اختلال قابل توجهی در سیستم‌های عملیاتی و کاربردی می‌شود. در این مقاله یک مدل ریاضی استکلبرگ به‌‏عنوان یک تکنیک در نظریه بازی‏‌ها جهت مدیریت صحنه نبرد ارائه می‌‏گردد. بازی در نظر گرفته شده شامل دو بازیگر(دشمن و نیروی خودی) است که هر یک جهت بهینه کردن اهداف خویش در تلاش هستند. در نظر گرفتن نیروهای هوایی و زمینی به‌‏صورت همزمان و در نظر گرفتن دارایی‌های طرف خودی و دشمن از جمله نوآوری‌‏های در نظر گرفته شده است. ابتدا یک مدل دو سطحی استکلبرگ ارائه می‌‏شود و پس‏ از خطی‌‏سازی، مدل دو سطحی با استفاده از شرایط کاروش کان تاکر (KKT) به مدل تک سطحی معمولی تبدیل شده است. در نهایت جهت نمایش کارایی مدل، تعدادی مثال با بهره‌‏گیری از نرم‌‏افزار گمز حل شده است.
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Proposing a Stackelberg mathematical model for weapon-target assignment considering both air and ground attacks

نویسندگان [English]

  • Nader Shamami
  • Esmaeil Mehdizadeh
  • Mehdi Yazdani
  • Farhad Etebari
Department of Industrial Engineering , Faculty of Industrial and Mechanical Engineering , Qazvin Branch, Islamic Azad University, Qazvin, Iran
چکیده [English]

Optimal assignment of equipment for disposal of targets, often referred to as a weapon assignment problem, has become one of the main centers of modern military thought. Weapon Target Assignment (WTA) is based on consideration of the principle of saving on resources, without reducing the power of systems and systems always to protect vital infrastructure. The critical infrastructure consists of the physical assets of a system, resulting in a significant disruption to operational and operational systems. In this study, a Stackelberg a mathematical model is presented to manage battle scenes. The Stackelberg model is considered to be a strategic game and an incomplete competition. The game is considered to consist of two actors (Enemy and Power), each striving to optimize its goals. Considering air and ground forces simultaneously, consider the assets of both the friendly and the enemy, including the innovations considered in this study. In this study, a two- level Stackelberg model has been presented and after linearization, the two- level model has been developed using Karush–Kuhn–Tucker conditions (KKT) to the ordinary one –level model. Finally to show the performance of the model, some examples are solved using GAMS software.

کلیدواژه‌ها [English]

  • Weapon Target Assignment
  • Battle scene management
  • Game theory
  • Stackelberg mathematical model
  • Optimization conditions of Karush Kuhn Tucker
·       احمدی، بهمن. نریمان‏زاده، نادر. جمالی، علی. (1395)، طراحی استراتژیک سیستم‏های مکانیکی در فضای غیرهمکارانه با استفاده از نظریه بازی، 7(16). 326-317.
·       افشردی، محمدحسین، (1394)، طرح‌ریزی راهبردی نظامی درصحنه جنگ و عملیات، تهران، دانشگاه عالی دفاع ملی.
·       امیربیگی، حسن، (1372)، طرحریزی عملیات مشترک و مرکب، دانشکده فرماندهی و ستادآجا، انتشارت دافوس.
·       بیگدلی ، حمید، ( 1396) رساله دکتری حل مسائل بازی چند هدفی فازی با استفاده از روش‏های بهینه‏سازی چند هدفی، دانشگاه بیرجند دانشکده ریاضی و آمار.
·       بیگدلی ، حمید، ( 1398) کاربرد نظریه بازی در تحلیل دفاع موشکی ضد بالستیک، دوفصلنامه بازی جنگ، 4، 41-25.
·       حسینی، اقبال. نخعی کمال‏آبادی، عیسی. فتحی، محمد. (1393)، توسعه روش‏های حل مسئله برنامه‏ریزی دوسطحی خطی بر اساس روش شمارش ضمنی و روش دوگان، مجله مدل‏سازی پیشرفته ریاضی، 1(4).
·       حیدری ، کیومرث، ( 1398) رساله دکتری بازطراحی اصول جنگ ارتش جمهوری اسلامی ایران در جنگ ناهمطراز ، دانشگاه عالی دفاع ملی.
·       سعیدی مهرآباد، محمد. اعظمی، عادل. (1396)، ارائه مدل بهینه‏سازی استوار دوسطحی در برنامه‏ریزی تولید با در نظر گرفتن تصمیمات قیمت‏گذاری به‏منظور پاسخگویی به تقاضا در فضای رقابتی: مطالعه موردی، نشریه پژوهش‏های مهندسی صنایع در سیستم‏های تولید، 11(5). 191-173.
·       احمدی، بهمن. نریمان‏زاده، نادر. جمالی، علی. (1395)، طراحی استراتژیک سیستم‏های مکانیکی در فضای غیرهمکارانه با استفاده از نظریه بازی، 7(16). 326-317.
·       افشردی، محمدحسین، (1394)، طرح‌ریزی راهبردی نظامی درصحنه جنگ و عملیات، تهران، دانشگاه عالی دفاع ملی.
·       امیربیگی، حسن، (1372)، طرحریزی عملیات مشترک و مرکب، دانشکده فرماندهی و ستادآجا، انتشارت دافوس.
·       بیگدلی ، حمید، ( 1396) رساله دکتری حل مسائل بازی چند هدفی فازی با استفاده از روش‏های بهینه‏سازی چند هدفی، دانشگاه بیرجند دانشکده ریاضی و آمار.
·       بیگدلی ، حمید، ( 1398) کاربرد نظریه بازی در تحلیل دفاع موشکی ضد بالستیک، دوفصلنامه بازی جنگ، 4، 41-25.
·       حسینی، اقبال. نخعی کمال‏آبادی، عیسی. فتحی، محمد. (1393)، توسعه روش‏های حل مسئله برنامه‏ریزی دوسطحی خطی بر اساس روش شمارش ضمنی و روش دوگان، مجله مدل‏سازی پیشرفته ریاضی، 1(4).
·       حیدری ، کیومرث، ( 1398) رساله دکتری بازطراحی اصول جنگ ارتش جمهوری اسلامی ایران در جنگ ناهمطراز ، دانشگاه عالی دفاع ملی.
·       سعیدی مهرآباد، محمد. اعظمی، عادل. (1396)، ارائه مدل بهینه‏سازی استوار دوسطحی در برنامه‏ریزی تولید با در نظر گرفتن تصمیمات قیمت‏گذاری به‏منظور پاسخگویی به تقاضا در فضای رقابتی: مطالعه موردی، نشریه پژوهش‏های مهندسی صنایع در سیستم‏های تولید، 11(5). 191-173.
 
·    Ahuja, R. K., A. Kumar, K. C. Jha, and J. B. Orlin, (2007), Exact and heuristic algorithms for the weapon-target assignment problem, Oper. Res., vol. 55, no.6, pp. 1136–1146,
·    Ahuja, R. K., Kumar, A., Jha, K. C., & Orlin, J. B. (2003). Exact and heuristic algorithms for the weapon-target assignment problem. Operations Research, 55(6), 1136-1146.
·    Akbari-Jafarabadi, M., Tavakkoli-Moghaddam, R., Mahmoodjanloo, M., & Rahimi, Y. (2017). A tri-level r-interdiction median model for a facility location problem under imminent attack. Computers & Industrial Engineering, 114, 151-165.
·    Aksen, D, Piyade, N., & Aras, N, (2010), “The budget constrained r-interdiction median problem with capacity expansion,” Springer-Verlag, p. 269-291.
·    Bigdeli.H, Hassanpour.H, Tayyebi.J, Multiobjective security game with fuzzy payoffs, Iranian Journal of Fuzzy Systems, 16 (1), 89-101 (2019).
·    Feghhi, N., Kosari, A. R., & Atashgah, A. (2021). A real-time exhaustive search algorithm for the weapon-target assignment problem. Scientia Iranica, 28, 1539-1551.
·    Haywood O. G. (1989). “Military Decision and Game Theory” Wiley, Journal of the Operations Research Society of America, Vol. 2, No. 4, PP 365-385.
·    Karasakal, Orhan, (2008) Air defense missile-target allocation models for a naval task group, Computers & Operations Research 35 1759 – 1770.
·    Kline, A. G., Ahner, D. K., & Lunday, B. J. (2020). A heuristic and metaheuristic approach to the static weapon target assignment problem. Journal of Global Optimization, 78(4), 791-812.
·    Liberatore, F, Scaparra, M, Daskin, P., & Mark S, (2011), "Analysis of facility protection strategies against an uncertain number of attacks: The stochastic R- interdiction median problem with fortification," Computers & Operations Research 38, p. 357–366.
·    Losada, C, Scaparra, M, Paola, C., & Richard L., (2009) "On a bi-level formulation to protect uncapacitated p-median systems with facility recovery time and frequent disruptions," Electronic Notes in Discrete Mathematics 36, p. 591–598.
·    Mahmoodjanloo, M., Parvasi, S. P., & Ramezanian, R. (2016). A tri-level covering fortification model for facility protection against disturbance in r-interdiction median problem. Computers & Industrial Engineering, 102, 219-232.
·    Musegaas, M., Schlicher, L., & Blok, H. (2021). Stackelberg production-protection games: Defending crop production against intentional attacks. European Journal of Operational Research.
·    Naseem, A., Shah, S. T. H., Khan, S. A., & Malik, A. W. (2017). Decision support system for optimum decision making process in threat evaluation and weapon assignment: Current status, challenges and future directions. Annual reviews in control, 43, 169-187.
·    Quadros, H., Roboredo, M. C., & Pessoa, A. A. (2018). A branch-and-cut algorithm for the multiple allocation r-hub interdiction median problem with fortification. Expert Systems with Applications, 110, 311-322.
·    Silav, A., Karasakal, E., & Karasakal, O. (2021). Bi-objective dynamic weapon-target assignment problem with stability measure. Annals of Operations Research, 1-19.
·    Sonuç, E. (2020). A modified crow search algorithm for the weapon-target assignment problem. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 10(2), 188-197.
·    Stoos, V., Ulmke, M., & Govaers, F. (2021). Adiabatic Quantum Computing for Solving the Weapon-Target Assignment Problem. arXiv preprint arXiv:2105.02011.
·    Truong, N. X., Phuong, P. K., & Tien, V. H. (2021, April). Fast and Simple Method for Weapon Target Assignment in Air Defense Command and Control System. In International Conference on Industrial Networks and Intelligent Systems (pp. 403-415). Springer, Cham.
·    Wu, X., Chen, C., & Ding, S. (2021). A Modified MOEA/D Algorithm for Solving Bi-Objective Multi-Stage Weapon-Target Assignment Problem. IEEE Access, 9, 71832-71848.
·    Zhang, K., Zhou, D., Yang, Z., Li, X., Zhao, Y., & Kong, W. (2020, October). A dynamic weapon target assignment based on receding horizon strategy by heuristic algorithm. In Journal of Physics: Conference Series (Vol. 1651, No. 1, p. 012062). IOP Publishing.
·    Zou, S., Shi, X., Guo, R., & Lin, X. (2020, July). Solving Multi-Stage Weapon Target Assignment Problems by C-TAEA. In 2020 39th Chinese Control Conference (CCC) (pp. 1593-1598). IEEE.