بررسی نقش و جایگاه سکوهای پرنده بدون سرنوشت و سیستم‌های اطلاعات مکانی در فرماندهی و کنترل از دیدگاه زنوماتیک

امیرحسین شکری

سعید صادقیان

چکیده

سکوهای پرنده بدون سرنوشت به علت اطمینانی که از منابع تهیه اطلاعات در این سیستم‌های فرماندهی و کنترل، خلاصه بر قابلیت تهیه محصولات سبب می‌کند، در محیط‌های مختلف و تیز کمر به افراد متخصص را نسبت به سایر روش‌های دارا می‌کنند. در این مقاله به ارزیابی قابلیت‌های نوین سکوهای پرنده بدون سرنوشت، آنالیز و تلفیق اطلاعات این سیستم‌های قابلیت‌پذیر برای استفاده از این داده در سیستم‌های اطلاعات مکانی برای کاربردهای نظامی و دفاعی پرداخته می‌شود. برای این منظور پرسی‌ها بر روی تصاویر اخذ‌شده توسط سکوهای CanonIXUS127HS، توسط نرم‌افزار Pix4dmapper صورت گرفته است. با بهره‌گیری از گیرنده سامانه ماهواره‌ای ناوبری جهانی و واحد اندازه‌گیری اپرشنال المان‌های توجیهی خاص تهیه و نظارت بر اقدامات تغییرات فضای فرمالی و با استفاده از ابزارهای مناسب دقت هندسی تصاویر مجموعاً از 16 نقطه کنترل زمینی در منطقه به علت نقاط چک استفاده و مقادیر خطای پیاده‌سازی از آنها محاسبه گردید. نتایج، میانگین خطای مؤلفه‌های مستحکمی به ترتیب 0.070 و 0.014 متر و در مؤلفه ارتفاعی 0.090 متر را نشان داد که این نتیجه بانگر دقت بالای محصولات سه‌بعدی تهیه‌شده با استفاده از این سکوها بدون استفاده از نقاط کنترل زمینی است.

واژه‌های کلیدی:
سیستم‌های اطلاعات مکانی (GIS)، سکوهای پرنده بدون سرنوشت، تلفیق اطلاعات

1. آموزشگاه نهاد سازمان نظام‌های نیروی هوایی ایران، ایران
2. آموزشگاه نهاد سازمان نظام‌های نیروی هوایی ایران، ایران
3. ایمیل: ahshokri@mihanmail.ir
مقدمه

فرماندهی و کنترل عبارت است از ترتیب دادن تسهیلات، وسایل، نفرات و روش‌هایی که برای دریافت کردن، پرورش دادن و توزیع اطلاعاتی که مورد نیاز تصمیم‌گیرندگان، برابر طرح‌ریزی هدایت و کنترل عملیات است به کار می‌روید (کالینز، ۱۳۸۷). اعمال اختراع و هدایت از سوی یک فرمانده مشخص بر نیروهای اموم برای تحقق مأموریت. به عبارت دیگر کارکردهای مربوط به ترتیب بندی نیرو، تجهیزات، ابزار، تأسیسات و راهکارهایی که کار گرفته‌شده توسط یک فرمانده در طرح‌ریزی، هدایت، هماهنگسازی و کنترل نیروها و عملیات جهت تحقق کامل مأموریت (عملیاتی، ۱۳۸۷). در زمان فعلی تولید، تبدیل، انتقال اطلاعات و مدیریت آن امری مهم شدیدی شده که بسیار دشوار است. به‌طوری که در جنگ خلیج فارس، فن آری نیروها در مقابل هم بوده است. لذا در مواقفی نیاز به جنگ‌گردن رودورو نیست مبارزه با استفاده از فن آری می‌بخواد صورت می‌گیرد و نبخر در زمان کوتاه به دلیل وجود فن آری اطلاعات به باقی می‌رسد. (نامی و همکاران، ۱۳۸۷).

تجهیزات، تسهیلات، روش‌ها و شیوه‌های لازم برای جمع‌آوری، پردازش و توزیع اطلاعات برای تصمیم‌گیرندگان به منظور طرح‌ریزی برقراری، برنامه‌ریزی، هدایت عملیات و اعمال کنترل و نظارت می‌دانند، استفاده پیوسته از اقدامات ابتدایی، برقراری نظامی، عملیات روانی، جنگ الکترونیک ویران‌سازی عادی با پشتیبانی منتظر از‌نظر اطلاعاتی را برای محروم کردن دشمن از اطلاعات، تحت تأثیر قرار دادن دشمن، کاهش یا ایجاد امکانات فرماندهی و کنترل دشمن، تقویت امکانات فرماندهی و کنترل دولت‌های دوست در برای جنگ امکاناتی از سوی دشمن، را نیست. از وظایف فرماندهی و کنترل می‌دانند (چگینی، ۱۳۸۲)، به‌طورکلی کارکردهای اصلی در فرماندهی و کنترل به شرح زیر می‌باشند:

- جمع‌آوری و پردازش اطلاعات محیطی
- برقراری و حفظ ارتباط بین اعضای سیستم فرماندهی
- طرح‌ریزی، سازمان‌دهی، هماهنگی و هدایت عملیات
- پشتیبانی هم‌جنگی از نیروها و تداوم آن در تمام مراحل عملیات
- فرماندهی، کنترل و نظارت بر نیروها در صحنه عملیات
- خنثی‌سازی اقدامات دشمن با استفاده از عملیات فریب، عملیات روانی، جنگ الکترونیک و غیره
نقش و اهمیت سکوهای پرنده بدون سرنوشت در امور دفاعی و نظامی برحسب پوشیده‌ی نیست. اهمیت موضوع آن قدر زیاد است که اغلب کشورها سرمایه‌‌گذاری‌های زیادی در این زمینه انجام داده‌اند. بیشترین سرمایه‌گذاری‌ در جهان در زمینه ساخت و تجهیز سکوهای پرنده بدون سرنوشت را وزارت دفاع ایالات متحده آمریکا انجام داده است. به طوری که بین سال‌های ۱۹۹۰ تا ۱۹۹۵ حدود سه میلیارد دلار هزینه برای طراحی و ساخت و تجهیز سکوهای پرنده بدون سرنوشت هزینه کرده است. حادثه ۱۱ سپتامبر ۲۰۰۱ باعث شد تا دولت آمریکا بودجه بیشتری را به طراحی و ساخت و تجهیز سکوهای پرنده بدون سرنوشت اختصاص دهد. بر اساس آخرين براوردها ارزش این صنعت در سال ۲۰۲۰ بالغ بر ۱۲۷ میلیارد دلار خواهد شد (به‌پایه‌ی پیگی پدیا دانشگاه آزاد، ۲۰۱۹). امروزه نقش تولید سکوهای پرنده بدون سرنوشت و استفاده از این تکنیک در فرماندهی و کنترل سیستم مهم است. هر چند، این تکنیک‌ها عالی‌تر باشد لزوم استفاده از این داده‌ها حیاتی بر می‌شود. از نگاهی دیگر نقش تولید سکوهای پرنده بدون سرنوشت در استراتژی نظامی و سیستم‌های اطلاعاتی مکانی در طراحی و تصمیم‌گیری فرماندهی نظامی، با فن‌آوری قسمت‌های مختلف کنترل و فرماندهی بسیار زیاد است. سکوهای پرنده بدون سرنوشت از این جهت مهم و راهبردی به‌حساب می‌آید که نیاز به اعضاً نیرو به پشت خطوط دشمن نیست. نسبت و زمانی که سکوهای پرنده بدون سرنوشت به همراه نشده است، بدون تلفات انسانی می‌توان این برای مصارف مختلف استفاده کرد.

سایت‌های اصلی برخه‌ی حاضر، این است که سکوهای پرنده بدون سرنوشت و سامانه‌های اطلاعات مکانی (C4I) کمک می‌کند؟ آیا تولید داده‌های مکانی دقیق از مناطق عملیاتی دشمن (مناطق دور از دسترس) وجود دارد؟ آیا داده‌های مکانی تولید با استفاده از سکوهای پرنده بدون سرنوشت دارای دقت کافی برای مقاصد نظامی مورد نیاز است؟ و همچنین در سایت‌های اصلی برخه‌ی حاضر استفاده از که کارگری مناسب است که سکوهای پرنده بدون سرنوشت همراه استفاده از سنجیده‌های مناسب به‌منظور اخذ سریع اطلاعات دقیق و قابل استفاده و برداشت این اطلاعات در سامانه‌های اطلاعات مکانی (GIS) و موجب به‌هوش هرگز بیشتر کارایی سیستم فرماندهی و کنترل (C4I) می‌گردد. و فرضیه‌های فرعی به‌ترتیب، به کارگری مبتنی بر اطلاعات اختصاصی سکوهای پرنده بدون سرنوشت موجب توانمندی‌های هرگز بیشتر گیاه‌های عملياتی می‌شود. به‌همراه این نیازمندی است که سکوهای پرنده بدون سرنوشت و سامانه‌های اطلاعات مکانی (GIS) باعث اختلال در مأموریت‌های عملياتی می‌گردد.
مباحث نظری و پیشینه‌های پژوهش

مباحث نظری

در حال حاضر با پیشرفت‌های صورت گرفته در سنجش‌های های تصویربرداری رقومی و سامانه‌های تبعیض‌محور، دوربین‌های هواپیمایی انالوگ جای خود را به دوربین‌های هوایی (GPS/IMU) رقمی و اسکین‌های لیزری مجزه به سامانه‌های تابوئی و تبعیض‌محور معیاردهای غیر متغیر که در حال حاضر سنجش سکوهای بدون سرنوشت با دوربین‌های رقومی نصب‌شده در آن‌ها سامانه‌های فتوگرامتری پهپادی و پیش روی قرار داده‌اند. این عوامل باعث شده که قالی‌گیری قابلیت‌های بهره‌برداری در نرم‌افزارهای سنجش سکوهای بدون سرنوشت در حالت حاضر نمی‌تواند نقش خود را در امر تهیه نشان دهنده حرفه‌مند بلهکه توجه به آن مخصوصاً در امور نظامی افزایش یافته (کارزینی و همکاران، 1395، 1395). بسیاری از افراد به کار بردن وابستگی به سکوهای بدون سرنوشت را به‌جای پهپاد تریج می‌دهند. در حال حاضر سیستم‌هایی هستند که از موارد زیر تشکیل شده‌اند:

1. یک دو سکوهای بدون سرنوشت در اکتشفس. 2. استغلال‌های کنترل زمینی که به‌عنوان مرکز فرماندهی سکوهای بدون سرنوشت به شمار می‌روند و وظیفه کنترل سکوهای بدون سرنوشت در ارتباط اطلاعات از حس‌گرهای آن‌ها را بر عهده‌دارند. 5. ارتباط رادیوپیک که بین سکوهای بدون سرنوشت و مرکز کنترل زمینی برقرار می‌شود.

بر همین اساس سازمان اداره هوآوردی فدرال آمریکا، لفت (UAS) را برای خطاب قرار دادن این سکوهای به کار می‌برد که شامل تمامی سایلی و ابری است که در کنار آن‌ها به برق‌بری ارتباط با استدلال‌های زمینی کمک می‌کند. امکان نصب سنجش‌های مختلف بر روی سکوهای بدون سرنوشت به جهت مقاصد مختلف، موجب شده تا پیش از گذشته به این سکوهای توجه شود. اطلاعات اخذ‌شده از این سکوهای پس پردازش‌های اولیه به سامانه‌های اطلاعات مکانی (GIS) وارد می‌شوند و با بهره‌گیری از قابلیت‌های پیشرفته سامانه‌های اطلاعات موردنیاز برای مراکز مختلف تهیه و ارائه می‌شود.

پیشینه‌های پژوهش

تاکنون تحقیقات گسترده‌ای در زمینه استفاده از سکوهای بدون سرنوشت و سیستم‌های اطلاعات مکانی (GIS) در فرماندهی و کنترل (C4I) صورت گرفته است. در ادامه برخی از پژوهش‌های داخلی و خارجی صورت گرفته است.
پردازش (1387)، در مقاله‌ای از سیستم اطلاعات مکانی بهعنوان ابزاری برای دریافت، نگهداری، بازیابی، به هنگام سازی، پردازش، تجزیه و تحلیل، مدال‌سازی و نمایش داده‌های مکانی گوناگون یک ابزار عالی تصمیم‌گیری برای فرماندهان نظامی در عملیات‌ها معرفی کرده است. وی در تحقیق خود به مروری اجمالی بر یک درکگیری سیستم‌های اطلاعات مکانی در کاربردهای نظامی پرداخته است. صمدزادگان و همکاران (1391)، در پژوهشی یک معموله نمونه‌برداری از و مقياس‌پذیر برای سیستم‌های مدیریت کنترل و فرماندهی ارائه می‌کنند. به‌دین منظور با بررسی و ارزیابی زیرساخت موجود در سیستم‌های اطلاعاتی دفاعی مشکل از اجزای مستقل و جدا از هم، یک معموله یکپارچه برای پوشش نقاط ضعف این زیرساخت ارائه داده‌اند. میدانی و همکاران (1392)، طی تحقیقی به بررسی اهمیت و یک درکگیری سیستم‌های اطلاعات مکانی در توسعه فرماندهی و کنترل و روش‌های استاندارد و کتابخانه‌ای پرداخته‌اند. آن‌ها استفاده از فناوری‌های نوین مانند سیستم‌های اطلاعات مکانی همراه (Mobile GIS) و سیستم‌های اطلاعات مکانی تحت وب (Web GIS) به‌منظور مکان‌بایی بهترین مکان‌ها با کارکردهای مختلف پرداخته‌اند. اسیدی‌فرد (1394)، در تحقیق خود به بررسی و یک درکگیری داده‌های تصویری و پایه‌ای اطلاعاتی قناری و پهپاد، نقش مؤثری در ایجاد اشراق‌ها و ایجاد اطلاعاتی آمیخته و ایجاد مناطق مرزی را داشته و به‌طوری‌که نقاط جرم و حضور نیروهای دشمن و عناصر ضداقلا را نماینگر می‌سازد. وی از پهپاد بهعنوان ابزاری بسیار مهمی در پشتیبانی از یک‌گان عملیات مربوطی نام برده است. این گروهی از یک‌گان عملیات مربوطی (1396)، در پایان نامه‌ای به‌منظور به‌کارگیری منظور تهیه نقشه‌های برزگ‌مقیاس پرداخته است. نتایج تحقیق وی نشان دهنده پتانسیل‌های بالای سیستم‌های پرند به‌منظور پردازش و جاسوسی در کاربردهای نظامی است. فلمنگ و همکاران (1399)، طی تحقیقی به بررسی کاربردهای نظامی سیستم‌های اطلاعات مکانی (GIS) در مناطق ساحلی آمریکا برسیده‌اند. نتایج حاصل از این تحقیق همراه با روش‌های توسیع‌پذیری‌های پیش‌گام به‌منظور داده‌های جهانی عظیم در مقياس‌پذیر، به آمادگی می‌اطلاعات جغرافیایی در تجزیه و تحلیل جغرافیایی ساحلی، اگوگازری و ابزار برای تولید نقشه برای سازمان‌های نظامی آمریکا کمک خواهد کرد. هوارد (1312)، در مقاله‌ای به‌منظور تحلیل و جاسوسی در اثره‌ای تفاوت‌دهنده از دور (پهپاد) در امر فرماندهی و کنترل پرداخته است. نتایج تحقیق وی نشان دهنده قابلیت‌های بهتری از سیستم‌های پهپاد و استفاده از سنجش‌های گوناگون به‌منظور استفاده در کاربردهای مختلف نظامی و عملیاتی است. با این‌که و همکاران (1319)، در پژوهشی خود به کاربردهای سیستم‌های پرند به‌منظور پردازش برای مقایسه نظامی و راه‌حل‌های به‌هوری سیستم‌های اطلاعات مکانی
روش‌شناسی پژوهش
پژوهش حاضر از نظر هدف، کاربردی است و از نظر نحوه گردآوری داده‌ها، توصیفی و مکانی است. طرح اصلی تحقیق با عنوان "بررسی نقش و جایگاه سکوهای پرده بدون سرنگین و سیستم‌های اطلاعات مکانی (GIS) در فرماندهی و کنترل (C4I) از دیدگاه زمین‌شناسی" آغاز شده است. به منظور بررسی این موضوع، مطالعات دقیق با استفاده از منابع کتابخانه‌ای متعادل داخلی و خارجی صورت گرفته است و برای گردآوری اطلاعات از منابع کتابخانه‌ای (مقالات، گزارش‌ها و کتاب‌های مورد نظر) و نیز منابع اینترنتی و دیگر منابع صاحب‌نظران دانشگاه‌ها و مراکز علمی و تحقیقاتی و کشور و جهان پره فرتجه است. با توجه به اینکه سکوهای پرده بدون سرنگین و سیستم‌های اطلاعات مکانی دارای کاربردهای بی‌شماری در امور نظامی و سیستم‌های فرماندهی می‌باشند، لذا در این مقاله برخی از مهم ترین و پروزه‌ترین کاربردهای این دو سیستم در امور نظامی و سیستم‌های فرماندهی و کنترل اردوه شده است. در شکل (1) مدل مفهومی تحقیق نشان داده شده است.
شکل (1) مدل مفهومی تحقیق

محدوده و محدودیت‌های پژوهش
از آنجا که سنجش‌های بسیار زیادی قابلیت نصب و استفاده بر روی سکوهای پرنده بدون سرنوشت را دارا می‌باشند، ارزیابی و بررسی هر یک از آن‌ها فراتر از حیطه این پژوهش است. همچنین تلفیق و استفاده از داده‌های سنجش‌های بدون سرنوشت، پردازش و تجزیه و تحلیل این داده‌ها در سیستم‌های اطلاعات مکانی در برگیرنده طیف وسیعی از مطالب است که از حیطه این پژوهش خارج است، لذا مروری مختصر بر روی برخی از آن‌ها خواهیم داشت.

منابع اطلاعات در سیستم فرمانده و کنترل (C41)
منابع تأمین اطلاعات موردی یک سیستم فرمانده و کنترل، یکی از بخش‌های اساسی این سیستم جهت تصمیم‌گیری و پشتیبانی فنی است. به طور کلی منابع اساسی تأمین اطلاعات
موردنیاز یک سیستم فرمانده و کنترل را می‌توان به بخش‌های ذیل تقسیم‌بندی کرد (شکل ۲).

[شکل ۲] منابع اطلاعات در سیستم فرمانده و کنترل (C4I)

از میان منابع فوق تنا منابع فضایی و هوایی در حیطه این مقاله می‌باشد. لذا از توضیح بیشتر در رابطه با سابر موارد صرف‌نظر شده است.

منابع هوایی و فضایی

موضوع تهیه اطلاعات موردنیاز از طریق سنجش‌های فضایی، بعد از جنگ جهانی دوم آغاز شد و با شروع جنگ سرد به‌شدت گسترش یافت. امروزه سنجش‌های فضایی کاربردهای بسیاری در خصوص تهیه اطلاعات برز و دقیق، جمع‌آوری متنابنده‌ای این سنجش‌ها می‌توانند فعالیت‌های هسته‌ای و یا پرتاب موشک، آرامش‌های نظامی، شناسایی مراکز نظامی، شناسایی مراکز حساس و استراتژیک محدوده پوشش رادر و غیره را تشخیص دهد. (عابدی‌نژاد و سهیمه، ۱۳۷۹). منابع هوایی شامل انواع سکوهای سرنین دار و بدون سرنین می‌شود. سکوهای بدون سرنین علاوه بر تأمین محصولات سه‌بعدی، مزایای معمولی از گزینه‌های صرف‌جویی در زمان، کاهش هزینه و نیاز کمتر به افزایش مختصات و تجهیزات خاص نسبت به روش‌های سنتی فتوگرافی و نقشه‌برداری دیجیتال را دارا می‌باشند. شناسایی قابلیت‌ها و توامین‌های سیستم‌های آتشگارسازی دشمن از قواعد اولیه دفاع غیرعامل است. درنتیجه رصد و ایجاد پایگاه اطلاعاتی می‌توان بر سکوهای خود بدون سرنین امکان‌پذیر است. کوچکسازی و ایجاد سکوهای پرنده بدون سرنین مختلف، افزایش توان تفکیک مکانی، طیفی، زمینی و
1. Ground Moving Target Indication
2. Imagery intelligence

به دلیل محدودیت‌های فناوری و فیزیکی، سیستم‌های تصویربرداری نمی‌توانند تصاویری اخذ که هم به لحاظ قدرت تفکیک طیفی و هم قدرت تفکیک مکانی دارای رزولوشن بالایی باشند و در بیشتر موارد عکس می‌پاشند. تصاویر پانکروماتیک دارای دقت مکانی بالاتر و طیفی پایین‌تری است و تصاویر ابر طیفی دارای قدرت تفکیک بالاتر و مکانی پایین‌تری هستند. برای بیشترین از هر دو نوع اطلاعات به صورت توام (طبیعی و مکانی) با دقت بالا از فن تلفیق تصاویر استفاده می‌شود (شکل 4) (بنیکر و همکاران، 1394). این فرآیند باعث ایجاد تصویری جدیدی می‌شود که دارای خصوصیات مورد نیاز در سیستم‌های فرماندهی و کنترل است.
ارتباط (C4I) با سکوهای بدون سرنوشت و سامانه اطلاعات مکانی

با توجه به مباحث فوق بهطور خلاصه می‌توان گفت که سیستم (C4I) یک سیستم هماهنگ و گسترده جمع‌آوری خبر، ارتباطات، فرماندهی، کنترل و اطلاعات است که از بخش‌های مختلف تشکیل یافته است و به دلیل اینکه کلیه اطلاعات جمع‌آوری شده و ذخیره شده در پایگاه‌های اطلاعاتی این سیستم، به‌نوعی با توجه به موقعیت مکانی عوارض سطح زمین ارتباط پیدا می‌کند، از اینرو برای مدیریت این داده‌ها می‌باشد تا سیستم‌های اطلاعات مکانی استفاده کرد و این سیستم‌ها یکی از بخش‌های تفکیک‌نام‌بر سیستم‌های (C4I) هستند (رضایی و همکاران، ۱۳۸۲).

سیستم‌های بدون سرنوشت دارای کاربردهای منجمله شنود و عملیات جاسوسی، پایش، شناسایی و تعبیه موقعیت اهداف؛ جنگ‌نگه و سکوب سلاح‌های هوابرد، تست و مانور سانشهای پدافند هوایی؛ اختراع و اهدام سیستم‌های راداری و مخابراتی؛ اجرای عملیات تهاجمی؛ هدف بردازی برای تمرین و آموزش کارکنان شکوه پدافند هوایی توبیخی‌های و موشکی و سایر کاربردها از جمله کاربردهای سکوهای بدون سرنوشت در امور نظامی می‌باشند. حال اگر سیستم‌های فرماندهی و کنترل در سطوح مختلف بررسی گردند، مشاهده می‌شود که بیشتر فعالیت‌های این سیستم‌ها از قبیل گروه‌های اطلاعات، اجرای باری جنگ، کنترل واحدهای عملیاتی، تعیین ترتیب و غیره که از کاربردهای متدول یک سیستم فعل و بروز فرماندهی و
کنترل است در قالب یک سیستم مبتنی بر سیستم‌های رنده بدون سرشین و سامانه اطلاعات

مکانی صورت می‌گیرد.

ابر نقاط سه‌بعدی، مدل رقیمی سطح، مدل رقیمی ارتقایی و تصاویر ارتومورزایکی و سایر
محصولات تولیدشده توسط تصاویر اخذشده توسط پهپاد و همچنین اطلاعات کیفی که از
طریق برداشته‌های دستی و خودکار می‌تواند به عنوان لاپهای اطلاعاتی بسیار مهم و دقیق در
سامانه‌های اطلاعات مکانی مورد استفاده قرار گرفته که در کاربردهای ازجمله
تشخیص و ارزیابی استاندارد، آشکارسازی تغییرات، شناسایی و آشکارسازی اهداف، برنامه‌ریزی
مأموریت، مکان‌بندی، میادین دید و تبر، سیستم‌های آفند و پدایند هواپیمایی، کنترل پروازهای
ذخیره‌سازی اطلاعات، مدیریت و طبقه‌بندی اطلاعات، تهیه گزارش‌ها و یا فعالیت‌های نظامی از
قبول تهیه نقشه‌های عملیاتی، شبیه‌سازی میادین جنگ، مکان‌بندی، میادین دید و تبر، کشف
تغییرات، برنامه‌ریزی امور، برنامه‌ریزی تحویل‌های از ویژه‌های و منطقه‌های مسکونی و
شهرهای نیروگاهی عملیاتی و کاربردهای دیگر مورد استفاده قرار گرفته در ادامه برخی
کاربردهای نظامی مدل رقیمی سطح (DSM) مورد ارزیابی قرار گرفته است (جدول 1).

<table>
<thead>
<tr>
<th>کاربرد نظامی</th>
<th>تعریف/مثال</th>
</tr>
</thead>
<tbody>
<tr>
<td>تولید و استفاده از یک مدل سه‌بعدی برای شناخت یک مکان مشخص</td>
<td>آکاهی مکانی</td>
</tr>
<tr>
<td>استفاده از یک مدل برای ارزیابی خط دید پستهای احتمالی دشمن</td>
<td>خط دید</td>
</tr>
<tr>
<td>استفاده از یک مدل برای ارزیابی خرارات‌های ناشی از انفجار یک عیب‌های دستی</td>
<td>شبیه‌سازی</td>
</tr>
<tr>
<td>مقایسه دو مدل تولیدشده در دور زمان مختلف به منظور آشکارسازی تغییرات</td>
<td>خرارات‌های یک عیب‌های دستی</td>
</tr>
<tr>
<td>ارزیابی یک منطقه منطقه می‌دان</td>
<td>ارزیابی منطقه‌های منطقه پیش‌بینی</td>
</tr>
<tr>
<td>اخراج مدل از یک منطقه برای ارزیابی آسیب‌های موجود در زیرساخت‌های غیرنظامی و نظامی که تحت حمله قرار گرفته است</td>
<td>تأثیرات</td>
</tr>
<tr>
<td>انجام برنامه‌ریزی ماموریت با استفاده از یک مدل سه‌بعدی از منطقه مورد نظر</td>
<td>برنامه‌ریزی ماموریت</td>
</tr>
<tr>
<td>استفاده از یک مدل سه‌بعدی برای انتخاب هدف عملیات</td>
<td>انتخاب هدف</td>
</tr>
</tbody>
</table>
منطقه موردطالعه

مطالعات صورت گرفته در این تحقیق بر روی منطقه Étagnières در کشور سوئیس واقع در عرض جغرافیایی '36° 46' و طول جغرافیایی '937° 6' صورت گرفته است. برای این منظور eBee plus مجموعاً 186 عکس از منطقه توسط سکوی پرنده بدون سرنوشت شرکت اخذ و پردازش گردید و محصولات نظیر CanonIXUS127HS سنسفلای سوئیس و سنجش ابر نقاط رنگی سه بعدی، تصویر ارتوموزاییک، مدل رقمی سطح (DSM) و مدل رقمی ارتفاعی (DEM) و سایر محصولات استخراج گردیده (شکل 5).

شکل (5) الف) مدل رقمی سطح ب) تصویر ارتوموزاییک منطقه موردطالعه

1. Digital Surface Model
2. Digital Elevation Model
تجزیه و تحلیل داده‌ها

ارزیابی دقت هندسی داده‌های مکانی تولیدشده توسط سیستم ارائه D، بدون سیستم

به منظور اثبات دقت هندسی محصولات تولیدشده از تولیدشده ارائه بدون سیستم ارائه توسط لاین ابر انجام پذیرفته است. به منظور عکس‌برداری دقیق، افزایش دقت هندسی و عدم نیاز به نقطه کنترل زمینی از گیرنده سامانه ماهواره‌ای ناوگان ناوبری جهانی (GNSS) و واحد انتزاعی گیرنده اینتراشیال (IMU) برای اندازه‌گیری دقت المان‌های توجهی خارجی تصویر استفاده شده است. سپس به منظور ارزیابی دقت این المان‌ها در منطقه مجموعاً از 19 نقطه کنترل زمینی به عنوان نقطه چک استفاده شد و خطای باقیمانده هر یک از آن‌ها محاسبه گردید (جدول 1). تصویر ارثوموزاییک تهیه شده از منطقه دارای دقت هندسی 2/15 سانتی‌متر و از نقاط زنگی و مدل رقیمی سطح به دست آمده نیز دارای دقت در حدود 2/10 سانتی‌متر است (شکل 9).

جدول (2) خطای باقیمانده نقاط چک در سه مؤلفه (بر حسب متر) (X,Y,Z)
مراحل اجرایی سیستم فرماندهی و کنترل (C4I)

به طور کلی مراحل اجرایی یک سیستم فرماندهی و کنترل (C4I) به شرح جدول (C4I) است که مراحلی که سکوهای بردنه بدون سرنوشت و سیستم‌های اطلاعات مکانی می‌توانند در آن تکنیک‌های مکانی بندی اشاره شده است. البته باید توجه داشت که ترتیب انجام امور فوق و...
اولویت‌بندی آن‌ها متغیر است و اولین قدم در راستای ایجاد این سیستم، تعیین اهداف بلندمدت و کوتاه‌مدت این سیستم بر اساس نظرات کارشناسان امر است. تشکیل شورای کاربران و انجام نیازسنجی و یا تعریف استانداردها و قوانین مربوط در مراحل بعدی قرار خواهد گرفت (رضایی و همکار، 1382).

جدول ۲ نشان و چاپگاه سکوهای پرنه بدون سرنوشتی و سیستم‌های اطلاعات مکانی (GIS) در اجرای یک سیستم فرماندهی و کنترل (C4I)

<table>
<thead>
<tr>
<th>مرحله اجرایی یک سیستم فعال</th>
<th>C4I</th>
<th>سیستم‌های اطلاعات مکانی بدون سرنوشتی</th>
<th>سیستم‌های اطلاعات مکانی بدون سرنوشتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیازمندی جامع و تعیین دقیق حدود سیستم حداکثر برای یک دوره ۱۰ ساله</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>بررسی کارشناسان زیرساخت‌ها و تجهیزات مورد نیاز و امکان‌سنجی</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>اجرای برنامه‌های آموزشی مناسب در سطح نیروهای مسلح جهت کار با سیستم‌های جدید و فرهنگ‌سازی مناسب</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>برنامه‌ریزی جهت ایجاد زیرساخت‌های فنی مورد نیاز در قابل یک برنامه زمان بندی‌شده</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>تدوین قوانین و دستورالعمل‌های مناسب جهت تولید، ذخیره‌سازی و نگهداری اطلاعات مختلف</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>طراحی فرم‌افزارها و پروتکل‌های ارتباطی ممکن‌بین مخابرات مختلف شبکه</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>ایجاد سیستم‌های C4I و سیستم‌های مبتنی بر سکوهای پرنه بدون سرنوشتی به‌صورت محدود در سطح گاه‌های مختلف و اتصال کاربردهای GIS و اطلاعات آن‌ها در یک مرکز فرماندهی مشترک محلی جایگزین</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>تشکیل شورای کارشناسان و برنامه‌ریزی در سطح نیروهای مسلح</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>اتصال مراکز C4I محلی به یکدیگر و تشکیل سیستم C4I جامع در سطح نیروهای مسلح</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
نتایج گیری و پیشنهادها

سکوهای برنده بدون سرنوشت و سیستم اطلاعات مکانی (GIS) دارای کاربردهای بی شماری در امور نظامی و فرماندهی است که در جنگ‌های آینده نقش سیاسی کلیدی خواهد داشت. بنابراین نیازمند سکوهای برنده بدون سرنوشت اطلاعاتی با قابلیت‌های مناسب با انواع مأموریت اطلاعاتی‌های (شناسایی، مراقبت و هدف‌یافتن، جمع‌آوری الکترونیکی) هستیم. همچنین سکوها برنده بدون سرنوشت نظامی با قابلیت نصب سنجیده مختلف و استفاده از فن‌های تلفیق تصحیح این امکان را فراهم می‌آورد که در کوتاه‌ترین زمان اطلاعات مورد نیاز را از مناطق دشمن با دقت و کیفیت بالا تهیه گردد. سامانه‌های مبتنی بر سکوهای برنده بدون سرنوشت می‌توانند با استفاده از اطلاعاتی که اخذ می‌شود به صورت بی‌دردUMP领略 می‌توانند منبی‌های مهم جهت آماده‌سازی موردنیاز سیستم‌های موثر قدرت داشته باشند. این اطلاعات تجزیه و تحلیل های مناسب و منطقی مدل‌سازی شده این افعی داده و تصمیم‌گیری صحیح و سریع برای فرماندهان و دستیابی به موقعیت جنگی برتر را ممکن نماید.

استفاده و به‌کارگیری مناسب از سکوها برنده بدون سرنوشت و موانع استفاده از سنجیده مناسب، تهیه اطلاعات مورد نیاز فرماندهان و تصمیم‌گیری هر چه سریعتر فراهم ساخته به‌گونه‌ای که بدون زیستک از جانب سرمایه‌های انسانی اطلاعات دقیق و پروز از مناطق دشمن تهیه گردد و سیس این اطلاعات يسن از پردازش‌های اولیه در سیستم‌های اطلاعات مکانی و مورد استفاده گرفته (تأیید فرضیه اصلی). داشتن اشکال اطلاعاتی که توسط سکوها برنده بدون سرنوشت ایجاد شده در این امر می‌تواند سبب می‌گردد که یک‌گانی عملیاتی سیس ایجاد شده و آن‌ها را با مخاطرات کمتری مواجه سازد. از این توجه داشته که در استفاده از این ابزارها تمامی تمهیدات لو در باکر برداشرگ از در ویر صورت علاوه بر خشارت‌های مالی، سبب ایجاد اختلاف در عملیاتی‌های نظامی می‌گردد (تأیید فرضیه‌های فرعی).

بر طبق جدول شماره (3) مشاهده می‌گردد سکوها برنده بدون سرنوشت و سیستم‌های اطلاعات مکانی (GIS) در اجرای یک سیستم فرماندهی و کنترل (C4I) کارآمد جزئی اجتناب‌نافذی به شمار می‌آید. بر اساس شکل شماره (2) و جدول شماره (4) و جدول شماره (3) (ماندگین خطای باقی‌مانده مربوط به نقاط دچاربختی محورهای مستطیلی به ترتیب، 2009-0 و 0.14-0.000 متر و در مولفه ارتفاعی (Z)، 2009 متر است که نماینده دقت بسیار بالای نقشه‌ها و محصولات سیستمی تهیه‌شده با استفاده از سکوها برنده بدون سرنوشت بدون استفاده از نقاط گزارش (GNSS) زمینی است. از این رو می‌توان با بهره‌گیری از گیرنده (GNSS) و یک اندازه‌گیری اکثریال
بررسی نقش و جایگاه سکوهای پرنده بدون سرنده و سیستم‌های اطلاعات

بدون استفاده از نقاط کنترل زمینی از مناطق عملیاتی دشمن (مناطق دور از دسترس) اطلاعات موردیاب فرماندهان و تصمیم گیران نظامی و از دقت بالا فراهم و با استفاده از سامانه‌های اطلاعات مکانی پردازش و تجزیه و تحلیل نموذ. با توجه به شکل (۴) در تشخیص استتارد هر چه به سمت مناطق حساس تر بیشتر کنیم تلفیق داده‌های سنجش‌های مختلف بسیار کارآمد به نظر می‌رسد. برای تشخیص استتارد با استفاده از دود، گردوبیار، استتارد در زیر خاک و عمق‌های زندگیک به سطح زمین و یا با استفاده از گیاهان و در مناطق‌گیاهی سنجش‌های راداری و لیدار بسیار کارآمد است. همچنین در تشخیص استتارد با استفاده از تورهای استتارد، سنجش‌های چند طبیعی و مادون فرم‌دار این سنجش‌ها را بسیار زیادی می‌باشند. تلفیق این اطلاعات و استفاده از سیستم‌های نوین پردازش تصادف کمک شایانی به شناسایی و جلوگیری از انواع تهدیدات می‌کند.

در پایان به یژوه‌های تنوع می‌گردد در تحقیقات آتی بهره‌گیری از قابلیت‌های بیشتر تهیه تلفیق در زمینه هوش مصنوعی و یادگیری ماشین به منظور پردازش و تجزیه و تحلیل سیستم‌های مختلف سکوهای پرنده بدون سرنده مورد تحقیق قرار داده شد.
منابع

- انتی عضوی، امین. (1396). ارزیابی قابلیت تصویر بهبود در تولید DSM و ارتوفیلمومتریک به منظور استفاده در مناطق عملیاتی پایان‌نامه ارشد، دانشگاه و پژوهشگاه پیامبر اعظم (ص). گروه سنجش ارزوند و سیستم اطلاعات مکانی، دانشگاه جامع امام حسن (ع).
- اسدی فرد، مهدی. (1394). نقش پیش‌بینی در ایجاد امنیت و اشراف اطلاعات مناطق مرزی کشور.
- پژوهش‌نامه مطالعات مرزی 3 (1). 1394.
- بشر پور مرتضی، ولدی رحیم، مهدی‌جوادی، مقصودی، یاسر. (1394). توقف تصویر سنگین ازدوری با روش FFT-PCA.
- پمپیسی، مهندسی فناوری اطلاعات مکانی (5)، 1372.
- پدرائی، غلامرضا. (1384). راهنمای تدوین دکترین، علم‌آمیز، داوودی، چاب، یکم، تهران، دبیرخانه هیئت علمی تجدیدنظر در ایلی‌نامه‌های نیروهای مسلح.
- جلالی نسب، عبدالرضا، روشی، محمد. (1390). نقش GIS در راستای بهبودی بهبودی از C4I در امور دفاعی. بنیاد کنفرانس ملی قرماندهی و کنترل ایران، تهران، دانشگاه مهندسی برق و بی‌کامپیوتر، پردیس دانشکده فنی، دانشگاه تهران.
- رضایی باران، فرشته. (1387). فرمانده‌ها از یک کارگیری GIS چه سودی می‌برند؟ علوم و فنون نظامی، 5 (12) 93-100.
- رضایی، علی‌محمد، مهدهی، محمد. (1384). توقف سیستم GIS با سیستم اطلاعات جغرافیایی و ایجاد سیستم فرماندهی و کنترل همه جانبه مجهز سیاست دفاعی، 1372.
- صدرزادگان، فرشته، سرویکی، محمد. (1391). توانمندی‌سازی C4I با استفاده از فناوری اطلاعات مکانی، نشریه علمی، مهندسی، نقشه برداری و اطلاعات مکانی (4)، 1375.
- عسوسی، هیبره، قلی‌زاده، محمدحسین، ایوغوئی، محمد، (1390). تدوین استراتژی راهبردی در جنگ سایبری بر پایه تکنولوژی (RFID)، بنیاد کنفرانس ملی فرماندهی و کنترل ایران، تهران، دانشگاه مهندسی برق و کامپیوتر، پردیس دانشکده فنی، دانشگاه تهران.
- کاظمیان، علی‌اکبر، سعید، سلیم، محمد، امن، زاهدی، میلاد. (1395). خط تولید فندک‌های هویتی، در رقموی بر سنای نماینده جای چاب، یکم، تهران، انتشارات ماهواره.
- کالینیز، خان. (1370). استراتژی پژوه، کورش بایندر، دفتر مطالعات سیاسی و بین‌المللی، تهران.

Shokri, A.H., Rezaei, M., Miri Jazari, B., (2017). Determine the optimum time to perform precise point positioning using GPS (case study Kermanshah, Iran). *The 2nd National Conference on Geospatial Information Technology (NCGIT), Tehran, K.N. Toosi University of Technology Faculty of Geomatics Engineering*.

